If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-8t+90=0
a = -4.9; b = -8; c = +90;
Δ = b2-4ac
Δ = -82-4·(-4.9)·90
Δ = 1828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1828}=\sqrt{4*457}=\sqrt{4}*\sqrt{457}=2\sqrt{457}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{457}}{2*-4.9}=\frac{8-2\sqrt{457}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{457}}{2*-4.9}=\frac{8+2\sqrt{457}}{-9.8} $
| 5=9+4a | | 7(4u−9)=10u−7+10u | | 106+78+x=180 | | 18x/7=14-x | | 24=-6u+2(u-4) | | −8w+13=−10w−19 | | 8=4(w+8)+4w | | 5n−2(11−3n)=7(2n−3)−3n−1 | | 3-5a=-9+a | | 9p+11=-26 | | -(s-6)=-3 | | 5(x05)=6x-33-5x | | 18x÷7=14-x | | 102+2y=180 | | 13x+24=12x+12 | | 360=4m | | 5(2y-1)=-1+10y | | -4x-20=4(1-3x) | | 3j+18/5=-9 | | 12j-15=3(2j+3) | | Y=-r+2 | | F(x)=-2x+4x+9 | | -2.12(g+8)=2.12 | | 3j+18/5=9 | | 5(y+9)+y=2(y+2)+7 | | 5-4n=n-4n-2 | | (x-1)(x+2)-1=0 | | -12x+7x+17=38 | | (2x-3)4x-(5x-1)(x+3)= | | 3.2g−2.4=23.2 | | 60x+20=0 | | 38=7x+17+12x |